宫羽涅提示您:看后求收藏(迦南小说网https://www.jnweishang.cc),接着再看更方便。
事件视界最有名的例子来自于广义相对论中对于黑洞的描述:一个质量大到附近的物质或辐射无法逃离其重力场的天体。通常,这个边界是当对于黑洞的脱离速度大于光速的位置。然而,更精确的描述是在这个视界中,所有的光锥都已经变形朝向黑洞中心。一旦粒子进入视界中,朝向黑洞运行与在时间中前行是一样不可避免的,而两者在某些坐标系底下甚至是一样的。
大小为史瓦西半径的物体表面便是一个不转动的黑洞的事件视界(转动的黑洞的行为稍有不同)。一个物体的史瓦西半径正比于其质量。理论上来说,任何有质量的物体可以被压缩成一个黑洞,只要我们将所有的质量压缩进其对应的史瓦西半径大小的空间中。例如太阳的史瓦西半径大约是3公里,而地球的史瓦西半径大约是9毫米。但实际上来说,地球与太阳都不具备足够大的质量来抵抗如此高密度的情形下产生的电子与中子简并压力。实际上要克服这样的压力而形成黑洞所需要的质量称之为奥本海默极限,大约是3倍的太阳质量。 [1]
然而,与黑洞事件视界的观念常常被误解。人们通常错误地认为黑洞会将物质抽入真空,实际上黑洞对于物质的吸引力与其他具有重力的物质皆一样。另外一个常常被误解的概念是认为人们可以观测到物质掉入黑洞的过程,这却是不可能的。天文学家仅仅可以看到黑洞附近的吸积盘,因为这里物质高速运动所产生的高能辐射可以被人们观测。另外,遥远的观测者并不可能看到物质跨越事件视界,而仅仅能看到物质以越来越慢的速度靠近它。
在宇宙学中也有不同的视界。其中宇宙学的事件视界是位于可观测宇宙中同移距离最远处,也就是“现在”所放出的光子将能被未来的观测者看到的最远距离处。这与另外一个宇宙学中的视界,粒子视界,的观念是不同的。粒子视界是在给定某个时间的观测者后,过去释放的粒子仍旧能到达这个观测者的最远同移距离处。在粒子视界更远处,即便是宇宙刚诞生时就发出的光子将不能再到达这个观测者。 [2] 而宇宙学视界的位置与时间的关系是根据宇宙膨胀所决定的。当宇宙的膨胀具备特定的性质,无论观测者等待多久时间,部分的宇宙将永远无法被观测。
到事件视界的同移距离对t的函数为:
在这个公式中,"a"是宇宙标度因子、"c"是光速、""是时空坐标系时间轴的重点,若宇宙永远膨胀下去,则这个值为无限大。
然而也有宇宙学的模型是没有事件视界存在的,一个例子便是德西特宇宙模型。 关于宇宙学视界具体的计算被详细的记录在关于flrw宇宙学模型的论文中,一个以状态方程近似宇宙的模型。