月夜孤饮提示您:看后求收藏(迦南小说网https://www.jnweishang.cc),接着再看更方便。
是不是要欺师灭祖?
周易这一招,直接把自己放在了最强的位置。
一旦这些人认识到数学对于《周易》的革新,那么《周易》到底是玄学还是数学,就不好说了。
接下里周易才开始叙述起来数学对于周易的发展,
从集合论与《周易》的关系说起。
周易开始说道:
“集合论是现代数学的基础,它不仅渗透到了数学的各个领域,也渗透到了许多自然科学和社会科学的领域。
德国数学家康托(,1845~1918)首先提出了集合的概念,他于1872~1897年间发表了一系列关于集合论的论文,奠定了集合论的基础。”
周易先解释了一下集合论的来历,也为接下来的做准备,只见周易继续说道:
“《系辞》说:‘方以类聚,物以群分。’
这里所说的‘类’与‘群’就与数学中的‘集合’概念非常接近。
易学研究中的许多命题,用集合论的语言来描述,就会更加方便、清楚和精确,有利于揭露问题的本质。
本章先介绍集合论的一些基本概念,然后说明易学问题与集合论中的一些基本概念的联系。”
随后周易把这一大章分成了四个小节来叙述。
“定义:
设a_1,a_2,…,a_n。是n个集合,在a_1中取兀系α_1,在a_2中取元素α_2,…在a_n中取元素α_n,
作成一个有序的n元素组(a_1,a_2,…,a_n,),称为集合a_1,a_2,…,a_n的一个n元序组。a_1,a_2,…,a_n的所有n元序组所成的集合:
d={(a_1,a_2,…,a_n)丨a_1∈a_1,a_2∈a_2,…,a_n∈a_n}
称为集合a_1,a_2,…,a_n、的笛卡儿积,记作:
d=a_1a_2a_n。
特殊情况:若a_1=a_2=…=a_n=a时,则称d为a的n重笛卡儿积。
a_1a_2a_n的一个子集r,称为集合a_1,a_2,…,a_n的一个关系。
易学研究中的许多概念与集合的关系这一概念有密切的关系,
我们随便举一个例子,相信各位风水师必然是十分了解。
这里应该是例题了。
古书《系辞》说:‘易有太极,是生两仪两仪生四象,四象生八卦。’
又说:‘八卦成列,象在其中矣因而重之,爻在其中矣。’
这些话有何哲学的义理,我们暂且不去管它。
但从集合论的观点看,易卦集可以看成另外一些集合的笛卡儿积。例如:
设a={1,0}是“两仪”的集合,作a的二重笛卡儿积:
=aa={(1,1),(1,0),(0,1),(0,0)}
如此,我们可以得到一个‘四象’的集合。
作a的三重笛卡儿积:
c=aaa={(1,1,1)(1,1,0)(1,0,1)(0,1,1)(1,0,0)(0,1,0)(0,0,1)(0,0,0)}
就会得到一个‘八卦’集合。
接着如果我们再作a的6重笛卡尔积,就可以得到易卦集。
这里的过程较为简单且单一,建议读者自信证明。”
周易留了一道作业,毕竟要做这个方向的鼻祖,不留作业怎么行呢?
让这群玄学带师体验一下数学系学生的痛苦。
证明题的痛苦。
周易喝了一口水,润了润喉咙,继续说道:
“如果从“四象”的集合b出发,作b的三重笛卡尔积,同样我们也能得到一个易卦集。
d=bbb。
同样,我们还可以从‘八卦’的集合c出发,作c与c的笛卡尔积,也能得到一个易卦集,
这里由于时间有限,且步骤较为简单,留作一个习题。
紧接着,我们进行进一步分析,易卦集d还可以看做另外一些形式的笛卡尔积。
但是时间有限,且过程较为简单,留作一个习题给广大的易学爱好者。”
每一个章节,周易把《周易》或者其余古书之中的例子拿出来当成例题或者习题,
给这群易学爱好者,到时候这群人做不出来,还不得乖乖求自己。
又懂易学又懂数学的人,有多少呢?
就算这些人做出来了之后,还能有自己的权威?
都得来求自己。
周易都已经算好了,到时候整个玄学界大多数都得来求自己。
写完了第二章周易与集合论的关系,周易开始了写第三章,
本章未完,请点击下一页继续阅读!